点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:大发平台登录-互动百科
首页>文化频道>要闻>正文

大发平台登录-互动百科

来源:大发平台计划2024-04-29 17:48

  

大发平台登录

《勇敢的翅膀》:人物成长与家国情怀同频共振******

  作者:张德祥(中国文艺评论家协会副主席)

  在湖南卫视播出的现实军旅剧《勇敢的翅膀》,给荧屏带来一种特殊的青春气息。作为国内首部以空军轰炸航空兵战斗生活为题材、以K型机改装为背景的长篇电视剧,该剧表现军人的故事,军人的风采,令人眼前一亮,视野大开。

  在题材上将“军旅”与“成长”融合,是《勇敢的翅膀》的一大特色。作为轰炸机飞行员,肩负特殊使命。特殊使命需要特殊人才。特殊人才是怎样锻造出来的?该剧讲述新一代飞行员的成长过程。主人公秦朗个性强,不盲目随大溜,凡事要经过认真思考。这种性格在纪律严明的军队中显得有些不合群。由一开始被淘汰到成为优秀的轰炸机飞行员,他的成长经过了一系列磨炼。比如,秦朗为找专家违规开车,路上救人,却被误认为是撞人者。这是对他的一种“信任”考验,也是促使部队领导进一步认识他的过程。还有飞行中突发“特情”,他的女朋友谈小雅的“间谍”嫌疑等,在一次次考验中,他奠定了信任与忠诚的基石,练就了不为困难和挫折压倒的坚定意志,最终使坚强个性与纪律性达成一致,使坚定意志与忠诚信任达成一致,把个人才情融入军队的现代化建设之中。谈小雅的成长过程也是如此。她经历了诸多挫折,但初心不改,发挥技术特长,为提高轰炸机的电子对抗能力尽职尽责。可见,新一代青年人在部队的锻炼成长,不仅有先进的科技知识武装,更有思想品质和军人素质的锤炼,从而折射出我军新时代现代化建设的风貌。

  围绕男女主人公的成长过程,与主人公搭配工作的角色也是饶有趣味。作为机长,也是秦朗上级,丰雷作风正派、纪律严明,与秦朗多次发生冲突,甚至严厉训责。但严师出高徒,二人由开始的情绪对立,到真正相互了解彼此,终于找到了问题症结。丰雷为了解决秦朗“特情”处理上的问题,从心理入手,对症施策。而与丰雷形成鲜明对比的是电子对抗旅刘队长,作为谈小雅的上级,刘队长深谙部队规则,事事请示,时时请示,看起来遵守规则,实则是不担责任。谈小雅帮助功勋团侦查干扰电台,刘队长认为这不是我们的本职工作,也不符合工作程序。但当谈小雅的工作得到功勋团的肯定,收到感谢函,刘队长又因感谢函上没有自己的名字而恼羞成怒。这个形象很有典型价值和镜鉴意义,他最大的错误就是在其位而不担其责,没有创造性开展工作。同样都穿着军装,怎样才是优秀的军人,看的是格局、品质、境界。要飞翔,就必须有勇敢的翅膀。此外,剧中出场的其他人物如陈团长、叶教导员、杨政委、吴汉等,也都有血有肉,真实生动,体现了我军的军人风采和军民鱼水情。

  “真实”也是观众网友评价《勇敢的翅膀》时的高频词,创作团队深入一线部队实地采访,从轰炸机航空兵的生活中汲取鲜活素材,创作过程历经6年。剧中不乏精彩作战演习场面,如低空飞行钻山谷、突破雷达监视实施临空轰炸、空中停车重大险情等。观众身临其境地跟随剧情走进军营,了解轰炸机航空兵这一群体的工作,直观感受改革强军取得的成就。可以说,《勇敢的翅膀》推动了军旅题材范畴细分深化,实现了创作边界的多向度探索。

  军旅剧,带有军人的阳刚之气,能振奋士气民心,是民族精神的一种具象体现和审美升华。贯彻新时代党的强军思想,讲好新时代军旅故事,展现中国军人的风采,是文艺创作的题中应有之义。从这个角度看,电视剧《勇敢的翅膀》向当下观众传递敢为梦想拼搏担当、敢为使命奉献牺牲的军旅精神和中国军人积极进取、牺牲奉献的精神风貌,展现出军旅题材电视剧的强劲生命力,为今后军旅题材电视剧的创作提供了有益的思考。

  《光明日报》( 2023年01月11日 15版)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 八天七夜 重庆网红地图请收下

  • 废物利用的艺术太有创意

独家策划

推荐阅读
大发平台返点原来窦骁喜欢的是这样的性感女孩何超莲
2024-04-19
大发平台下载圣保罗时装周男模摔倒当场猝死
2024-01-02
大发平台手机版“许志安”式男人值得原谅么?
2023-12-31
大发平台官方网站祝福吴奇隆刘诗诗"升级" 好的感情是只想在你身边
2024-06-21
大发平台APP80高龄的黑暗骑士,在游戏中书写过哪些传奇
2024-05-09
大发平台走势图49岁陈浩民晒针头戳眉照承认微整:不做很吃亏
2024-07-04
大发平台网投欲花20亿做营销 瓜子二手车成立四年咋仍不赚钱
2024-03-21
大发平台软件A股人均薪酬排行曝光:乐视网100万仅排第五
2024-10-25
大发平台出道这么久,为啥她让人议论最多的仍然是脸……
2024-10-16
大发平台手机版APP满满中国范!法国冬奥运动员把锦鲤印上头盔:希望中国人喜欢
2024-05-19
大发平台客户端星空有约丨立春元宵喜相连,本世纪仅有6次
2024-07-05
大发平台登录汇源自救方案公布 可口可乐没做成的事被它实现
2024-02-27
大发平台必赚方案 2019年第25届沃尔沃中国公开赛
2024-06-14
大发平台交流群豫章绣遇上“冰墩墩”:三百年非遗技艺“展新貌”
2024-06-18
大发平台下载app终身受益曾国藩24个锦囊
2023-12-09
大发平台技巧替嫁娇妻:偏执总裁宠上瘾
2024-03-03
大发平台规则腾讯公布2018年第二季度及中期业绩
2024-08-27
大发平台漏洞“全民级影视”爆款力作让我们看到了什么?
2024-09-04
大发平台app下载地下排污管发生爆炸 路面崩飞殃及过路人
2024-05-13
大发平台官网 周杰伦儿子首次看爸爸演唱会 随节奏打拍子
2023-12-17
大发平台开奖结果英媒:西方不能将中国拒之门外 否则会失去更多
2024-02-18
大发平台充值五一热门旅游城市晴雨表出炉 深圳成都雨水打卡四天
2024-07-09
大发平台客户端下载文武双全的李建成被抹黑成了小丑
2024-10-16
大发平台玩法高校师生研发眼球控制轮椅
2024-03-06
加载更多
大发平台地图